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¢ GLOBAL SURJECTIVITY OF SUBMERSIONS [

VIA CONTRACTIBILITY OF THE FIBERS

BY
PATRICK J. RABIER
¢ Department of Mathematics
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT. We give a sufficient condition for a C' submersion F: X — Y, X and Y real

Banach spaces, to be surjective with contractible fibers F~!(y). Roughly speaking, this [ ]
condition “interpolates” two well-known but unrelated hypotheses corresponding to the two

extreme cases: Hadamard's criterion when ¥ =~ X and F is a local diffeomorphism, and

the Palais-Smale condition when ¥ = R. These results may be viewed as a global variant

of the implicit function th , which unlike the local one does not require split kernels.

They are derived from a deformation theorem tailored to fit functionals with a norm-iike

nondifferentiability.

1. Introduction.
If X and Y are real Banach spaces and F : X — Y is a C' submersion, i.e. F'(r)is
onto Y for every z € X, are there conditions ensuring that F is onto Y'? And when F is
* surjective, what can be said about the topological structure of the “fibers™ F~}(y),y € Y?

From a 1967 work of Earle and Eells [8] we get this answer to the second question:

Theorem 1.1. Let X and Y be real Banach spaces and F : X —» Y a C' submersion.
Assume that
’ (i) Fisonto Y. ®
(ii) ker F'(z) splits for z € X.
(iii) For every z € X, F'(z) has a right inverse s(z) € L(}, X) such that the mapping
$: X — L(Y, X) is locally Lipschitz continuous and s{(z)/(1 + ||z}}) is locally bounded over
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Y (1) ie. for every yo € Y there are a neighborlicod V5 of yo in Y and ny > 0 such that
Hs(z)}/(1 + lzl]) < o, Vr € F~H{V0).

Then, F : X — Y is a locally trivial C? fiber bundle. In particular, F™'(y) is con-
tractible for y € Y, and any two fibers are homeomorphic.

Earle and Eells’ method of proof of Theorem 1.1 is as follows: assumptions (i), (ii)
and (iii) are used to establish the bundle structure by a horizontal lifting of paths. Local
Lipschitz continuity is involved via an associated ODE, and local boundedness is needed
for the completeness of the flow. This part extends to C' Banach manifolds with a Finsler
structure. Contractibility of F~!(y) is obtained through its status of Banach manifold,
the homotopy sequence, and a theorem of J.H.C. Whitehead.

The major trouble with Theorem 1.1 is that its conditions (i) and (iii) are hard to check
in concrete applications, even for finite dimensional X and }". Regarding (i}, surjectivity,
results are scarce for mappings which do not enjoy any particular properness property. On
the other hand, proper submersions, which are open and closed, are surjective. But as
we shall see, they are nothing more than diffeomorphisms except perhaps in some rather
pathological cases (Corollary 4.3). This implies the failure of the usual method of proof
of Hadamard’s theorem to establish surjectivity instead of bijectivity, and explains the
apparent absence of such results from the literature. As for condition (iii) of Theorem 1.1,
the difficulty comes from local boundedness over Y, which holds for proper maps (not too
useful in our setting, as just mentioned), is accessible to verification in Hilbert spaces, but
is generally out of reach in Banach spaces because there is no absolute constant bounding
the norm of projections onto arbitrary complemented subspaces ([6] and [10]). We also
note that, in practice, local Lipschitz continuity of the right inverse demands local Lipschitz
continuity of F', i.e. F to be of class C?~ (in Palais’ notation [12}). In particular. Theorem
1.1 does not apply to general C! submersiona.

It is the aim of this paper to prove, by a quite different and direct method. a variant
of Theorem 1.1 which is more readily and more widely applicable, and which in addition
guarantees surjectivity of F without any properness assumption (Theorem 4.1). More
precisely, we shall only assume that a simple inequality holds, which in its crudest form

(*)In (8], it is assumed that s is locally bounded over Y, but this generalization is straightforward.
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(1.1) WF'(x) "l 2 clly’ll, VreX, Wy €Y,

where F'(z)* € £(Y*,X*) is the adjoint of F'(x) and c > 0 is a constant, and that the
space Y has a norm of class C' away from the origin. This condition is of course satisfied
when Y is a Hilbert space, and also (Restrepo {14]) when the dual ¥* of Y is separable

)

{whence Y is separable). The sharper form of (1.1) we shall use is given in (4.2), and
a vaniant of it corresponds to a generalization of the Palais-Smale condition for Banach
space valued mappings (Corollary 4.1).

In all cases, surjectivity of F and contractibility of the “Gbers” F~!(y) will be ensured,

although in our setting there is no guarantee that F: X — Y is a fiber bundle, as we are
not assuning that ker F*(z) splits for = € X, or that F is smoother than C'. However, »
based upon Theorem 1.1, we prove that it is so if X and " are Hilbert spaces and F is

of class C*~ (Theorem 4.2). We also clarify the relationship between our condition (4.2)

s

and the hypotheses of Theorem 1.1: if dimY < o0, condition (4.2) is strictly weaker, and

it is neither weaker nor stronger if dim}™ = co. In Corollary 4.2, we observe that Theorem

4.1 contains as a special case an improved version of Hadamard's theorem. which seems to [ ]

supercede the other available variants. In this respect. it should he poiuted out that when

F is a local diffeomorphism, (1.1) is equivalent to Hadamard’s condition ||F'(z)™'}} < &,

, with k = 1/c¢. Finally, in Theorem 4.3 we show that the mappings satisfying the condition

(4.2) also satisfy a converse of the intermediate value property: the inverse image of a

connected open subset is connected. > .
Everything hinges upon a deformation theorem (Theorem 3.1) which is the object of

{ Sections 2 and 3. To establish contractibility, our spproach makes no use of liftings or —

: algebraic topology. It is very close to the methods of critical point theory, where the —==

goal is to deform one level set into another in the absence of critical points. One major 0

difference is that the classical theory applies only to functionals of class C! in the whole [}

space X, while ours applies only to functionals which are not: for our assumptions to —==

make sense, the functionals must behave like the absolute value function [r{ when X = R, -

i.e. have a derivative bounded away from 0 in the vicinity of minimizers (this statement ™=
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should not be taken literally; sec Sections 2 and 3 for details). In Section 4, we use the
deformation theorem with the functional ||F —y]|,y € Y fixed, to prove nonemptyness and
contractibility of F~'(y).

For clarity of exposition, the simplest form of the deformation theorem, which suffices
when (1.1) bolds, is proved in Section 2, Corollary 2.1. Section 3 presents the final gener-
alizations involving extra technicalities that we have preferred to keep separated so as not
to obscure the issue.

As mentioned earlier, the main result in (8] extends to Banach manifolds with a Finsler
structure. In contrast, ours remains valid only when X but not Y is such a manifold,
because the need for a norm-like function of class C! on Y rules out the cases when Y is
not (diffeomorphic to) a Banach space.

The deformation theorem (Theorem 3.1) has other applications, notably to critical point
theory and to the structure of the set of minimizers of functionals. which will be presented

elsewhere.

2. A result of contractibility.

Let X be a real Banach space and J : X — (—00,0] a continuous functional. Denote
by Z the level set J='{0). We shall assume throughout this section that J is of class C"
in X \ Z and that there is a constant ¢ > 0 such that

(2.1) 170 2e, VreX\2Z

Obviously, (2.1) never holds if Z # 8 and J is C' in X, unless J = 0, and hence nondiffer-
entiability of J is essential here.

Recall that a pseudo-gradient vector field for J in X'\ Z is a locally Lipschitz continuous
mapping V : X \ Z — X such that

(22) IVl <2’ (0))l, VreX\2Z

and

(23) F(@W() 2 (IR, VreX\2Z
4
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By (2.1), we have J'(z) # 0, Vz € X \ Z, and hence there is a pseudo-gradient vector field
V for Jin X \ Z (see e.g. [12]). From (2.1), (2.2) and (2.3) it easily follows that

(2.4) Wil 2e VreX\Z,

and that

J(e)WV(z) _ ¢
@ wEr 22

For z € X \ Z, let ¢(t,7) € X \ Z denote the solution of the initial value problem

Vre X\ 2

do, - Vielta)
(2.6) {aﬁ”’”‘m«w:an
@(0,7) = z.

Since V is locally Lipschitz continuous in X \ Z, the same thing is true of V/||V'{|, whence
p(t,z) is well-defined for ¢ in some maximal interval {0, a(r)) with 0 < a(r) £ oc. In the
following lemma, we collect a few properties of the semi-flow ¢ which are either trivial or
well known from ODE theory.

Lemma 2.1, (i} Letz€ X\Z and0 <, < t;3 < a(z). Then

(2.7) lp(ta, 1) —plty, )| S ta~ )
and
(2.8) uwua»-uwnJ»zau—uy

(ii) Let r € X\ Z and 0 < T < a(zr). For every € > 0, there is 6 > 0 such that

fy=zll <6 =>{T <aly) and sup [jp(t.7) — @(t.y)|| < €}.
t€{0.7)

Proof. (i) The inequality {2.7) follows from the fact that the field V/||V’]| has norm 1. For
the proof of (2.8), write J(p(t2,2)) ~ J(p(t,,2)) = :“ (z‘;J(np(f,:r)))dt and use (2.5).
Part (ii) is the standard continuous dependence upon initial values. 0

Qur second preliminary lemma is slightly more technical.
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Lemma 3.3. For z € X \ Z, the following properties hold:
(i) a(z) < o0.
(ii) p(a(z), ) := ,Jim _o(t, ) exists and is in Z.
(iii) The inequalities (2.7) and (2.8) remain valid for t; = a(z).

Proof. (i) Suppose by contradiction that a(z) = oo, so that (2.8) holds with ¢; = 0 and
ts = t > O arbitrary. Letting ¢ — oo, we find .l_i.r:lal(‘;(t.r)) = oo, contradicting the

¢ hypothesis J < 0. ]
(ii) Let t4 € [0,a(z)) be a sequence such that .liu:et, = a(z). From (i), (t,) is a Cauchy
sequence, whence (t.,z) is a Cauchy sequence by (2.7). Furthermore, if {, € [0,a(z))
is another sequence such that _l_u‘x; i, = a(z). it follows from (2.7} that “an; lo(tn, 2} =
¢(ia,z)ll = lim |t, — fa] = 0, so that lim ¢(t.,2) is independent of the sequence (),
‘ N==00 n—0c .
ie. lim (L, z) exists.
t—a(z)~
If , li{n) p(t,z) € X\ Z, then ¢(-,z) can be extended to some interval {0,a(z) + ¢)
—a({z)}™
with ¢ > 0, in contradiction with maximality of (0,a(r)) (recall a(r) < oo from part (i)).
Thus, lim ¢(t,z) € Z.
t—a{z)~
4 (iii) In inequalities (2.7) and (2.8), let #; tend to a(z). By (ii) above and continuity [
of || - || and continuity of the function J, we obtain the validity of (2.7) and (2.8) for
tq=a(z). O
We now extend a and ¢ to X and [0, 00) x X, respectively, by setting
‘ » O
(2.9) a(z) =0, @(t,z)=r f z€Z and t>0
and
{ (2.10) Pt.z)=p(a(z),z) € Z if 7€ X\ Z and t > a(r). »
Note that the definition (2.10) makes sense in view of Lemma 2.2 (ii).
[
\ o
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Theorem 2.1. The above extensions of a and ¢ are continuous.

Proof. We begin with continuity of a in X \ Z. Part (ii) of Lemma 2.1 already ensures
that a is lower semicontinuous in X \ Z. To prove upper semicontinuity of a, suppose by
contradiction that there are a sequence 7, € X \ Z with ,EI“NI" =r€X\Zandn>0
such that a(zn) > a(z)+n, Yn€N.

Choose r > 0 such that r < cn/4 (with c as in (2.1)). In (2.8), let t; = a(z) (see Lemma
2.2 (iii)) and ¢, = T € {0,a(z)). Because p(a(r),z) € Z and T_!i.l(n‘)_ﬁP(T.T) = p(a(z),z)
(Lemma 2.2 (ii)) and because J is continuous, we have T_!i.ra)_ J(¢(T,z)) = 0. Thus, by
choosing T close enough to a(z), we can manage so that J(¢(T,z)) 2 —r. From Lemma
2.1 (ii), we have ,.li.n;,V’(T""") = ¢(T.z), whence nli_r‘t;oJ(p(T.:..)) = J@(T.r)). Asa

result, for n large enough, we have
(2.11) J@(T.1q)) 2 —2r.
Now, from (2.8) with 7, replacing 7 and t; = T,t; = a(z) + 1 (< a(zn)) we infer that
(2.12) J(ela(z) +1,24)) 2 H(AAT,70)) + %(a(r) +n~T).
Using (2.11) and a(z) - T > 0, r < en/4, we find (for n large enough)
(2.13) J(p(a(z) + 1.2a)) > ~2r + %’ >0,

in contradiction with the hypothesis J < 0. This shows that a is upper semicontinuous,
hence continuous, in X \ 2.

We now pass to the proof of the continuity of the extension of a defined hy a(r) = 0
for £ € Z. Clearly, it suffices to show that if € Z and z, € X\ Z, nli__n;ox.. = r, then
"li_x.r;a(z..) = a(z)(= 0). To see this, replace z by z, and choose t, = 0,t; = a(z,) in (2.8)
(Lemma 2.2 (iii)). Since ¢(0,z,) = 2, and p(a(z,).2,) € Z = J~10) ((2.6) and Lemma
2.2 (ii)), we obtain

f)
(2.14) 0<a(rn) < —iJ(m.

7
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which implies 0 < lim a(z.) < ~-1J@z)=0.

To prove the continuity of the extension of ¢ in (2.9) and (2.10), we choose (t.z) €
[0,00) x X and & sequence (t,,z,) € [0,00) x X such that nli_x’n“(t...r..) = (t,z), and

consider four cases.

Case 1: 0 <t < a(r),z € X\ Z. If s0, we have 1, € X \ Z for n large enough, and
Jim y(ta, 2a) = p(t, 2) follows from Lemma 2.1 (ii).

Case 2: t = a(z),z € X \ Z. Once again, 7, € X\ Z for n large enough, and by definition
(see (2.10)} we have p(tn,2a) = @(a(zs). 2a) if ta > a(x,). Thus, replacing t, by a(z,}
when t, > a(z,), we still have .l'_u.:;t,. = a(z) = t by continuity of a, and @(ts,z,) is
unchanged. This shows that we may assume t, < a(z,) with no loss of generality.

Let 0 < T < a(z) be arbitrary. From Lemma 2.1 (ii), (T, z,.) is well defined for n large
enough and

(2.15) "li_.nclov(T.:.) =(T, 7).
Next, by (2.7) with ¢, = T.tz = a(z) (Lemma 2.2 (iii)), we find
(2.16) lo(a(z).2) - AT.2)j < a(z) - T.
Likewise, for t, € {0,a(z,)) as well as for t, = a(z,):
(217) [(tn 2n) = P(T.2a)l| < Ita — T1.
Now, write
He(tn, za)=wla(z). ) < lo(tn, Ta) =@ T 2o i+@( T, 20) =@ T, )|+ (T . 7)—pla(2), 1)

Taking the limit as n — co and using (2.15), (2.16) and (2.17), we find (recall nli_n:nt,, =
a(r))
T 19(tn, z0) - pla(2).2)| < 2a(z) = T) ,

R SRR
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whence Enw(l..:.) — ¢(a(r),7)l| = 0 since 0 < T < a(r) is arbitrary. Equivalently,
Jim p(ta, 24) = pla(2). 7).

Cese 3: t > a’.).z € X\ Z. Here, we have 1, € X\ Z and t, > a(r,) (by continuity
of a, proved above) for n large enough. Thus (see (2.10)), @{tn.Ta) = pla(za).7a) and
o(t. 7" = pla(x),7), so that “li_x.x:oqp(!.,z.) = ¢(t,z) if and only if "li_{x;gp(a(.r,.).:r..) =
»la(z), z), which follows from Case 2 with t, = a(z4).

Cease {: € Z. From (2.9). we have »(t.7) = 1, and p(tn,7,) = 7, if 7o € Z. Thus,
the only nontrivial part of the proof consists in showing that ”h_r.x;) @(ta.74) = 1 when
za € X \ Z. Furthermore, using once again p{tn,70) = @la(z,),7a) if ta > alza), it
suffices to consider the case when t, < a(z,).

Choosing T = 0 in (2.17) (still valid), we see that {l(tn, 7o) ~ Zall < ta < a(a). By
continuity of a, 'anenoa(r..) = a(x) = 0 (see (2.9)). Thus, ,,ljfo‘n"ﬁ"(""’") — x4l =0, ie.

nli:r:ocp(t,..z,.) = z. This completes the proof. O

Corollary 2.1. The set Z = J~'(0) is (nonempty and) contractible.

Proof. Let a and ¢ be extended to X and [0, 00} x X, respectively, according to (2.9) and
(2.10). From Theorem 2.1, these extensions are continuous. Define ¢ :[0.1] x X — X by
v(t,z) = p(a{z)t,z), so that y: is continuous with ¥(0,z) = r for r € X,¢(1,1) € Z for
z € X,and ¥(t,z) = p(0,2) = z for 7 € Z and t € {0,1]. This means that v is a (strong)
deformation retraction of X onto Z. It is both standard and elementary that this implies
that X and Z have the same homotopy type (see e.g. (3]), and since X is contractible, Z
is also contractible. O

Remark 2.1: The (straightforward) argument used in the proof of Corollary 2.1 is needed
in the case when X is a Banach manifold. When X is a Banach space. as assumed here,
an explicit deformation of Z (within itself) into a point is given by the mapping

(t,2) €[0,1) x Z — p{a((1 -1)z),(1 -t)z) € Z.

which is identity for ¢ = 0 by (2.9), and constant (= ¢(a(0),0)) fort =1. O
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3. Generalisations. ]

Our applications in the next section are based on generalizations of Corollary 2.1 in-
volving sharpenings of Theorem 2.1 where now ¢ in (2.1) becomes a function of z. For
clarity, we first consider two different cases separately in the next two lemmas.

Lemma 3.1. Theorem 2.1 and Coroliary 2.1 remain valid if, in (2.1), we let ¢ = c(||z]])

where ¢ : [0,00) — (0, 00) is a nonincreasing function such that j;mc(s)ds = 0o0.

Proof. Existence of a (locally Lipschitz continuous) pseudo-gradient vector field V' for J
in X \ Z depends only upon J'(z) being nonzero in X \ Z and not upon (2.1). Thus, V
continues to exist and there is nothing to change in Section 2 up to and including inequality
(2.7), if ¢ = ¢(||z||) eve-ywhere. Evidently, inequality (2.8) makes no longer sense as stated,
and should be replaced by

{1
(31) Jottn ) - T, 2) 2 5 / izl + 9)ds.
(3%

To see that (3.1) holds, note that the method of proof of (2.8) first yields J((t3.2)) —
Jip(ts,2)) > § [ lllp(s.2)l)ds. From (2.7) with ¢ = s and t; = 0, it follows that
(s, 2 < llzll + s, whenee c(ll(s, z)|) 2 c(]lz]l + s) by monotonicity of c. This proves
(3.1).

Aside from replacing (2.8) by (3.1} =verywhere, the proofs of the previous section go
through with only minor modifications, described below. To begin with, for the proof of
Lemma 2.2 (i), it must be observed that [;° ¢(||z|| + s)ds = 0o because f;° c(s)ds = oo
and f‘.,"" ¢(s)ds < oo by monotenocity of c.

Next, at the beginning of the proof of Theorem 2.1, r > 0 should now be chosen such
that r < }f:((:,’"c(M + s)ds, where M > 0 is & constant bounding the norm of the

convergent sequence (z,). Inequality (2.12) should now read

alr)+n
(3.2) Jip(alz) + n.20)) 2 J(P(Toza)) + % / (M + s)ds.
T
Relations (2.11) (unchanged) and (3.2). along with T < a(r) thus yield, instead of (2.13)
1 felzi4n
J((ela(z) 4+ n,20)) 2 "?»"+§ oM + s)ds,
a{z)




and the choice of r continues to provide the desired contradiction.
Lastly, inequality (2.14) should be replaced by

al(za)
3.3) 0< / oM + )ds < =20(x.),
[}

where once again M > 0 is a constant bounding the norm of the convergent sequence (z,).
If a(x,) does not tend to 0, say a(zn) > a > 0 after considering a subsequence, then (3.3)

implies
o

(3.4) 0< / (M + s)ds € ~2J(z,).
o

But (M +3) > (M + a) for 0 < s < a by monotonocity of ¢, whence 0 < ac{Af + a) <
—2J(z.). As J(xa) — 0and a > 0, this implies ¢(M +a) = 0, contradicting the positivity
of ¢. Thus, as before, "le; a(za) = 0. No further modification is needed in the remainder
of the proof of Theorem 2.1. That its validity implies that of Corollary 2.1 is obvious.
Theorem 2.1 (hence Corollary 2.1) cannot be improved much further beyond Lemma 3.1
if the constas.t c in (2.1) is replaced by a function of z involving only |jz||. But if ¢ depends
upon z via J(z), things go quite differently. This case is considered in the subsequent

lemma.

Lemma 3.2. Theorem 2.1 and Corollary 2.1 remain valid if, in (2.1), we let ¢ = ¢(~J(z))

where ¢ : [0,00) — (0,00) is nonincreasing and lower semicontinuous.

Note: In sharp contrast with Lemma 3.1, there is here no limit about the rate of decay
of ¢ at infinity.

Proof. Once again, except for replacing ¢ by ¢{—~J(z)) everywhere, there is nothing to
change in Section 2 up to and including inequality (2.7). In addition, even (2.8) remains
valid with ¢ replaced by ¢(-J(z)). Indeed, from (2.5) with ¢ = ¢{—J(z)) and (2.6), it
follows that J(¢(-, 1)) is increasing, whence ¢(—J(p(-.7))) is nondecreasing, in [0,a(z)).

Also from (2.5) and (2.6),
1 /"
Holta, 20 - Jttr.a) 2 3 [ d=Tplo. 2o,
H
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and the claim follows from o(—J(¢(s,7))) > o(-J(z)) for s € [t),t3] C [0,a(z)). Asa
result, the proof of Lemma 2.2 goes through verbatim upon replacing ¢ by ¢(~J(r)) in
(2.8).

At the beginning of the proof of Theorem 2.1, choose r > 0 such that r < o ~J(z))n/4.
Nothing else needs to be changed up to and including inequality (2.11) and, instead of
(2.12), we now have

Jota(z) + n.20) 2 (T 200 + LD a(e) 40 - 7).
By (2.11) and a(z) — T > 0, this yields (for n large enough)

J(@la() +m.20)) 2 =2 + o~ J(za))g-

Using continuity of J and lower semicontinuity of ¢, we obtain

kR oo (p(a(z) +1,20)) 2 =27 + (- J(2))3,

and hence il ., J{¥(a(z) + n,2a)} > 0 from the choice of r. This requires J((a(z) +
7.%n)) > 0 for n large enough, in contradiction with the hypothesis J < 0. This proves
continuity of a.

A final modification occurs in (2.14), which becomes

0<a(za) < ;2"#

(—J(za))
Since J(z,) — 0 and c is nonincreasing, we have o(—J(z4)) 2 ¢co > 0 for every n € N,

where cp is a constant. Thus,
2
0<alzy) < —=J(z,),
co
showing, as before,that lim a(z,) = 0. The end of the proof of Theorem 2.1 remains the
n —oo

same. O

Remark 3.1: In Lemma 3.2, monotonocity of ¢ is convenient for the proof (and will suffice
for our applications) but actually irrelevant. Instead, one may use the fact that a lower

semicontinuous function achieves its minimum value on every compact set. O
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The arguments used in the proofs of Lemmas 3.1 and 3.2 can easily be combined to
yield Theorem 3.1 below, where a full statement is given for future reference and where J
has been changed into —J to reinstate a more customary positivity (instead of negativity)

assumption.

Theorem 3.1. Let X be a real Banach space and J : X — [0, 00) a continuous functional
of class C! in X \ Z where Z := J~}(0). Suppose that there are nondecreasing functions

¢1,¢; : [0,00) —= (0,00) with j:” c1(s)ds = 0o and ¢3 lower semicontinuous, such that
(3.5) 7' 2 alliziDea(J(z)), VzeX\Z

Then, Z # @ is a contractible subset of X.

Note: Condition (3.5) cannot hold if J is C! in X, unless J = 0, for otherwise Z # @
from Theorem 3.1, and J'(z) = 0 for z € Z. But then, (3.5) fails to hold for z € X \ Z

close enough to z.

Proof. Change J into —J to recover the setting of Section 2 and of Lemmas 3.1 and

3.2. By checking the proofs of these lemmas, it appears that except for replacing ¢ by

ci{lizlh)ez(—J(z)), nothing has to be changed in Section 2 up to and including inequality

(2.7). It also appears that inequality (2.8) now takes the form

a(=J(z) [*
2

4

J(p(t2,2)) = J(p(t1, 7)) 2 alllzli + s)ds,

which suffices for the validity of Lemma 2.2.
At the beginning of the proof of Theorem 2.1, choose r < 5’1-—"’-‘5”- f:((:)H" c1(M + s)ds,
where M > 0 is a constant bounding the norm of the convergent sequence (z,,). Combining

the arguments of the proofs of Lemmas 3.1 and 3.2 we find, instead of (2.13). that

- a(r)+y
limn o J(p(a(r) +1n,24)) 2 —2r + 2(—;-(3—)) / ci(M + s)ds,
al{z)
in contradiction with J < 0 for n large enough from the choice of r.

13
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Likewise, (2.14) becomes

—2J(za)
ca(=J(za))

Next, assuming by contradiction that nlingo a(z,) # 0 and hence that a(z,) > o > 0 after

o(za)
0</ (M +s)ds <
o

considering a subsequence, we get

O<ac(M+a)< iﬁ:‘—"),

where ¢y > 0 is & constant such that ¢(—J(x,)) > cy. A contradiction with positivity of
¢) arises from a > 0 and J(z.) — 0. From this point on, the proof of Theorem 2.1 can be
repeated without modifications, and of course Corollary 2.1 remains valid. Theorem 3.1 is
proved. O

As in Lemma 3.2, monotonocity of c; is not needed in Theorem 3.1 {see Remark 3.1).
Obviously, the product ¢, (|iz||)c2(J()) in (3.5) may be replaced by more general functions
c(lizll, J(z)), but this does not seem to lead to substantial improvements in our applica-
tions.

More interesting is the (straightforward) extension of Theorem 3.1 to the case when
X is a complete C*~ Banach manifold with a Finsler structure (see {12] or (7)), i.e. a
complete Riemannian manifold when dimX < co. The C?~ requirement is needed for
the existence of Lipschitz continuous pseudo-gradient vector fields. In this framework,
J'(z) must be understood as the differential dJ(z), and the norm of J'(z) in (3.5) is
that of T; X, hence depends upon z. Naturally, it makes no longer sense to consider the
function ¢, ([iz]|) since X is not a vector space, but it can be replaced by ¢{§(z, 70)) where
zo € X is fixed and the distance § is the Finsler metric of X. In this respect, note that
in this form, (3.5) is independent of the choice of zg: given another point 7o € X, we
have §(zo,2) < 8(zg,29) + 8(2Z9,2), whence ¢;(8(z0,2)) > c1(8(z0,F5) + 6(%0,7)), and
(3.5) holds with Z, replacing z¢ and ¢, replaced by the function ¢,(§(z¢,%¢) + s) which
remains nonincreasing with infinite integral in (0, 00). Another (crucial) point is that the
conclusion is no longer that Z # @ is contractible but that Z # @ has the same homotopy
type as X.
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4. Surjectivity of C' submersions.
We begin with a simple lemma, presumably not new.

Lemma 4.1. Let Y be a Banach space with norm || - || of class C* away from the origin
and set N(y) = liyll,y € Y. Then,

(41) IN(y =1, WyeY\{o}.
Proof. Let y € Y \ {0} be fixed. By positive homogeneity of N (“Euler’s theorem”) we

have N'(y)y = N(y) = llyll, whence |IN'(y)|| = 1. On the other hand, by convexity of N,
the classical inequality

N(z) - N(y) 2 N'(yNz~vy), VzeY,

holds. Thus, for v € Y, we have N'(y)v < [y + vll - Iy}l < livll, e YN <1, O
Our “improved” (see Remark 4.1 later) version of Theorem 1.1 is as follows.
Theorem 4.1. Let X and Y be real Banach spaces such that Y has a norm of class C!

away from the origin, and let F : X — Y be a C' mapping. Suppose that for every
sequence (z.) from X the following condition holds

(42)  F(za) bounded = limp—uo(1+ fzall) inf IF'(zn)"0") > 0 ().
Then:
()FX)=Y.

(ii) For every y € Y, F~'(y) is closed in X and contractible.

(iii) If y € Y and ker F'(z) splits for every z € F~(y), F~'(y) is a closed C' subman-
ifold of X (without boundary). Furthermore, F~'(y) is compact if and only if F'(z) €
GL(X,Y), ¥z € F~'(y), and in this case F~(y) is a singleton.

(?)In particular, F is a submersion; see the proof of the theorem.
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(iv) If ker F'(z) splits for every z € X, the manifolds F~'(y),y € Y, are all modeled on
the same closed subspace E of X.

Proof. None of the assumptions is affected by changing F into F — y for some y € Y.
Accordingly, it suffices to show that F~'(0) is nonempty and contractible, and to prove
part (iii) when y = 0.
Set J(z) = N(F(z)) where, as in Lemma 4.1, N denotes the norm of Y. The functional
J is continuous, of class C' in X \ Z with Z = J~(0) = F~!(0), and J > 0. Also, )
J'(z)k = (N'(F(z)), F'(z)h), h € X, where {-,-) denotes the duslity pairing between Y*
and Y, whence J'(z) = F'(z)*N'(F(z)),r € X\ Z. From Lemma 4.1,

@ ofe @

B 2 ”i.!;f_' IF(=yy'll, YzeX\Z,
and hence condition (4.2) implies that for every sequence (z,) from X \ Z we have [ ]
(4.3 J{(z4) bounded = Jim,_.o.(1 + [lza NI J'(za)ll > O.

In turn, it follows from (4.3) that for every R > 0, there is yg > 0 such that

{zr € X\Z,J(z) <R} = (1 + [lz)WJ'(z)l| 2 7. »
In particular, letting R = k € N\ {0}, we obtain a sequence (v;) of positive real numbers
such that
(44) {zeX\Z,J(z) <k} =1+ DIV (I = 8-
, , » ©
Replacing ya+1 by min(vyx, vk+1), k > 1, we may assume that the sequence (vx) is nonin-
creasing. For s € [0,00), set
c(s)=7;ifs€[j —1.5) j e N\ {0},
so that ¢; is a positive nonincreasing lower semicontinuous function. Given z € X'\ Z, let )
k > 1 be the smallest integer such that k — 1 < J(z) < k. Then, c3(J(z)) = v and, by
(4.4)
(4.5) (1 + =N’ (2)]] 2 ea(J(z)).
16 ®
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Now, for s € [0, 00), set
a(s)=1/(1+s),
whence ¢, is a positive decreasing function satifying f:" ¢1(8)ds = co. In this notation,
(4.5) reads
W@ 2 ai(fizl)ea(I(2)), Vz € X\Z,

and nonemptyness and contractibility of Z follow from Theorem 3.1.

Condition (4.2) implies that F is a submersion, for letting z,, = z (constant sequence)
we find infyy. yu1 [|F'(2)"y*]| > 0, which implies that F'(z) is onto ¥ (as is well known).
Thus, if ker F*(z) splits for 2 € Z,2Z is a C' submanifold of X. Closedness of Z in X is
clear.

For the “furthermore” part in (iii) of the theorem, note that Z being modeled on the
Banach space E := ker F¥(2¢),z¢ € Z arbitrary, it is not locally compact, let alone com-
pact, if dimE = oo. Suppose then that dimZ2(= dimE) = p < co. If p = 0, we have
F'(z) € GL(X,Y) for z € Z, and Z is contractible of dimension 0, hence a singleton. If
P 2 1, Z cannot be compact, for compact contractible manifolds (without boundary) of
positive dimension do not exist (see e.g. [1, p. 559}).

Part (iv) of the theorem is a general property of submersions with split kernels: by
considering a splitting ker F'(zo)®S, where S is a closed complement of ker F'(xp), 70 € X
fixed, it is easily seen that the restriction to ker F/(z) of the projection onto ker F'(zo)
is a linear isomorphism for r close enough to ro. Hence, the null-spaces ker F'(z) are
locally (in X) isomorphic. By compaciness and connectedness of the line segment joining
two arbitrary points in X, it follows at once that the null-spaces ker F'(z),z € X, are all
isomorphic. The conclusion follows from the fact that for y € Y, F~'(y)(# 0) is modeled
on ker F(z)forany z € F~'(y). O

For practical purposes, note that infyey=; }F'(22)*y"|| in (4.2) is obtained through

(4.6) inf IF(2)°y")f = inf B\“lgl(y°.F"(r)’l)~

Ky =1 Iy H=1gp =

Remark 4.1: It is of some interest to compare the hypotheses of Theorems 1.1 and 4.1:
(1) When dimY < oo, the hypotheses of Theorem 4.1 are weaker. In fact. condition
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(iii) of Theorem 1.1 alone implies (4.2). To see this, observe that local boundedness of
3(z)/(1+ liz]]) over Y and finite dimensionality of ¥ imply boundedness of s(z)/(1 + [|z|})
over the bounded subsets of Y, i.e. for B C Y, a bounded subset, there is n(B) > 0 such
that Jjs(2)ll/(1 + l|z[l) € (B), ¥z € F~(B). Then,forzr € Bandy € Y, [ly’l = 1, we

have
su z)A > sup sl"F‘i:H v _
nex&o) vEY\(n) hiad eY\(o) “=le
LLI l“-ev\(o) i' T = B0+ED

Thus, from (4.6), (1 + ||z[}) infyyeym IF'(2)°y*l| 2 1/9(B), ¥z € F~}(B), which is (4.2)
since B is arbitrary. (2) When dimY = oo, the hypotheses of Theorem 4.1 are no longer
weaker: they would be only if “F(z,) bounded” could be replaced by “F(z,) convergent”
in (4.2) (by an argument similar to the one used in (1) above) which of course is weaker
when dimY = oo, and an open question. 0O

More can be said when X and Y are Hilbert spaces.

Theorem 4.2. Suppose that X andY in Theorem 4.1 are Hilbert spaces. Then, condition
(4.2) alone ensures the validity of (i), (ii), (iii) and (iv) of Theorem 4.1, and in addition
we have

(v) If F is of class C*~,F : X — Y is a locally trivial C° fiber bundle, hence any two
fibers F~'(y) are homeomorphic.

(vi) If X is separable, hence X ~ ¢*, and dimker F'(z¢) = oo for some 7o € X, F~(y)
is C-diffeomorphic to £ fory € Y.

Note: Observe that (vi) above holds with merely F € C*.

Proof. The first statement is obvious. We shall prove (v) by showing that Theorem 1.1
applies. Conditions (i) and (ii) of that theorem hold, the former by Theorem 4.1. Also,
recall that condition (4.2) implies that F is a submersion. Thus, it suffices to show that
condition (iii) of Theorem 1.1 holds too.

We begin with a simple remark- if 4 € £(X,Y) is onto Y, then rge A* = (ker A)*
(identifying X* = X,¥* = Y). Hence, for h € (ker A)* \ {0}, there is y € Y \ {0} such

18
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that h = A*y and we have

HARY _ Ayl _ jAAcy) Hull o (AA°yy) _ A%

[L]] lAwll Ayl llvlt = Hadswll lvf Il
As a result, inf{||Ah]| : b € (ker A)L, [|lhll = 1} > infyyp=) |A%y||. Using this with A =
F'(z),z € X, we find that (4.2) implies that for every bounded subset B C Y, there is a
constant n(B) > 0 such that

(A7) (1 +|lzW)inf{IF'(2)hll : h € (ker F'(z))*, k)| = 1} > n(B), Vz € F~'(B).

Next, let 2, € X be given, so that F'(xo) € GL((ker F'(z4))1,Y) and hence F'(z) €
GL{(ker F'{z4))*,Y) for z in some neighborhood Us of z¢ in X. Local Lipschitz continuity
of F' implies local Lipschitz continuity of the right inverse

so(z) = [F'(’)l(m m-,ntl-l € GL(Y,(ker F'(z))Y), £ € Us.
Now, for z € Uj, the operator
o2) = |F(e)y,, .., )" € LY.X),

is the product of the orthogonal projection F'(z)*(F'(z)F'(z)*)~! F*(z) onto (ker F'(z))*
and of so{z) (surjectivity of F'(z), ensured by (4.2), is equivalent to invertibility of F'(z)F'(a
Hence, s above is locally Lipschitz continuous in Up. But s is defined everywhere in X,
and z is arbitrary, so that s is locally Lipschitz continuous in X.

It remains to show that s(z)/(1 + ||z|}) is locally bounded over ¥. Clearly,

lls()ll = 1/inf (| F'(2)h|l : h € (ker F'(2))*, (|4l = 1}.

Next, let yo € Y be fixed, and let V;, be any bounded neighborhood of yo. From (4.7),
there is ny := n(Vp) > 0 such that

(1 + jlzl)) inf{§F' ()Rl : b € (ker F'(z))*, {|hll = 1} 2 no, Yz € F~'(Vb),

whence {ls(z)}}/(1 + |zl) < 1/n0 for € F~'(V,), as was to be proved.

19
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For the proof of (vi), recall first that every separable C! Hilbert manifold may be
equipped with a C™ structure ({11}). In particular, this is true of F~'(y),y € Y, since
F~'(y) C X and X is separable. Next, any two separable Hilbert manifolds of infinite di-

@ ofe @

mension havire the same homotopy type are C* diffeomorphic (see [4, p. 380, footnote]).
From the assumption dimker F*(zy) = oo and Theorem 4.1 (iv), F~'(y) has infinite di-
mension for y € Y. As F~'(y) is contractible by (ii) of the same theorem, F~'(y) has the
same homotopy type as £2, and the conclusion follows. O

| Remark 4.2: (1) Extra smoothness of F, eg. F € C**!, ensures that the fibration
F : X — Y in part (v) of Theorem 4.2, is C* (see [8]), so that the fibers F~'(y) are
C* diffeomorphic in this case. (2) In part (vi) of Theorem 4.2, separability of X may be
replaced by separability of the model E := ker F'(xy),zo € X. (3) Obviously, Theorem
4.2 (vi) is not true when dim ker F'(z) is finite (and hence the same for all z € X), so that
F is Fredholm of index p > 0. We do not know when it can be ascertained that F~!(y) is
diffeomorphic to E = R? (the analog of Theorem 4.2 (vi) for this case), but we note that it
can for p = 0,1 and 2. The result is trivial if p = 0 since F~!(y) is a singleton (Theorem 4.1
(iii)). Likewise, if p = 1, F~}(y) is diffeomorphic to R, being a noncompact and connected
one-dimensional manifold. For p = 2, F~}(y) is a simply connected (because contractible) »
noncompact two-dimensional manifold, and those are known to be diffeomorphic to R? ({9,

p. 207]). For p = 4, the result is unlikely to be true because of the existence of “fake” R*,

but “homeomorphic” is plausible. O

The following criterion is useful.

Corollary 4.1. In Theorem 4.1, condition (4.2) holds if F is a submersion and every se-
quence (z,) from X such that F(z,) is bounded and "lil:r;o(l+||:r..ll) infyye g1 |1F'(2a)"y"|| =

0 contains a convergent subsequence (and hence no such sequence (z,) exists).

Proof. Suppose that the condition stated in Corollary 4.1 holds, and let (r,) be a sequence »
from X such that F(z,) is bounded and lim, .oo(1 + l|zal]) infyyep=1 IF'(za)*y*]l = 0.
Extracting a subsequence, we may replace “lin”™ by “lim” and hence, extracting another

subsequence, assume that lim z, = r and lim infyyey |[F'(20)'y*ll = 0.
R~—00 n-— a0
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To prove the corollary, we show that necessarily infyyey=1 |F'(2)*y"|| = 0. Indeed, this
contradicts surjectivity of F'(z) which, as is well known, implies the existence of a constant
7 > 0 such that |F'(z)*y°ll Z vliv*ll, Vy* € Y*.

For simplicity of notation, set F'(z,) = A,,, F'(z) = A. By continuity of F', nll-"o‘o A~
Aull =0, hence lim |l4° - A3]| = 0. Now,

g ol ATl S AT < 14T - AQl + AT Wt €Yl =1, YneN

As a result,
Jnf AT < A7 = A3+ int 43 Ve €N,
and the right-hand side tends to 0, whence infy,-ye: JA4°2°)| = 0, as desired. O
When Y = R, the condition in Corollary 4.1 coincides wit the famous Palais-Smale
condition (C), in the weak form discovered by Cerami [5]. On the other hand, when
Y ~ X and F is a local diffeomorphism, we find

Corollary 4.2. Suppose that in Theorem 4.1, F is a local diffeomorphism. Then, F is a
C! diffeomorphism of X onto Y. In particular, it is so if F is a local diffeomorphism and
for every sequence (z,) from X we have

IF (za)~" i

< oo
T+ {izall

(4.8) F(z,) bounded = ,.ll.":o

Proof. Because [|[F'(z)7 || = [(F'(2)*)""|I, we have
inf P2y ) = e
it A TR )
i.e. (4.8) is equivalent to (4.2). Parts (i) and (iii) of Theorem 4.1 establish surjectivity and
injectivity of F, respectively. O
We refer to {15] for other variants of Hadamard's theorem, which all follow from Corol-
lary 4.2 (from the proof of Theorem 4.1, it is obvious that the weight (1 + [jz]{}™! in (4.8)

could be replaced by ¢(]|z)}) where ¢ : [0,00) — (0, 00) is nonincreasing and J;,“ ofs)ds =
oo). Also, without “F(r,) bounded™ in (4.8). the condition is known. As it stands, (4.8)
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is necessary (and sufficient) for the inverse F~! to have a derivative bounded on bounded
subeets of Y (hence necessary and sufficient when dim X = dimY < o0). Indeed, if (F-')'
maps bounded sets to bounded sets, we have F'(z,)"! = (F~')(F(z,)) bounded when-
ever F(z,) is bounded, and (4.8) holds. For finite dimensional X and Y, Corollary 4.2
can be further improved ({13]).

Because of Corollary 4.2, Theorem 4.1 may be viewed as a generalization of Hadamard's
theorem, and it is natural to ask whether the properness criterion has a similar general-
ization, i.e. whether proper C! submersions are surjective. Submersions being open (even
without split kernels, [1]) and proper mappings closed, the answer is positive. However, the
usefulness of this remark depends partly upon the breadth of the class of proper submer-
sions. Strong evidence that those are hardly more than diffeomorphisms has already been
provided by Berger and Palstock [2], who showed that there is no C?~ proper submersion
which is Fredholm of index p > 1. Our next corollary goes a little bit further, in the same

direction.

Corollary 4.3. Let X and Y be real Banach spaces such that Y has a norm of class C!
away from the origin and let F : X — Y be a proper C! submersion. If either

(i) ker F'(z) splits for every z € X and F is of class C?~,
or

(ii) dimY < oo,

F is a diffeomorphism of F onto Y.

Proof. In both cases (i) and (ii), ker F'(z) splits for z € X. As noticed above, F is
onto Y. whence F~'(y) is a C' submanifold of X for y € Y. Also, F~(y) is compact
so that dim F~'(y) < oo by an argument from the proof of Theorem 4.1 (iii). Since
dim F~'(y) = dimker F'(z),r € F~'(y), we have dimker F'(z) < co,¥r € X,ie. Fisa
Fredholm mapping with index p > 0.

In case (i) of the corollary, p = 0 from the aforementioned result of Berger and Pla-
stock. In case (ii), it follows from properness of F and finite dimensionality of }* that
condition (4.2) holds, using the criterion of Corollary 4.1 (if F(z,) is bounded, it contains
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a convergent subsequence; next, use properness of F). By Theorem 4.1 (iii), we have
F'(z) € GL(X,Y),Vz € X, so that, once again, p = 0.

Thus, in both cases, F is a proper local diffcomorphism (being a submersion), and hence
a diffeomorphism of X onto Y. O

Remark 4.3: In sharp contrast with Corollary 4.3, it is easy to find examples of mappings
satisfying (4.2) which are not diffeomorphisms. For instance, all the linear continuous
surjective maps do. O

Our final result shows that the mappings of Theorern 4.1 satisfy a converse of the
intermediate value property.

Theorem 4.3. Let X and Y be real Banach spaces such that Y has a norm of class C!
away from the origin, and let F : X — Y be a C' mapping satisfying condition (4.2) of
Theorem 4.1. Then, the inverse image F~'(U') of an open connected subset U C Y is
(open and) connected.

Proof. As a first step, we show that the inverse image of a closed ball B, with radius r > 0,
is contractible (the case considered in Theorem 4.1 is r = 0). With no loss of generality,
assume that B, is centered at the origin, and for r € X, set

Je(z) = max(||F(z)ll.r) - r.

This functional is continuous, nonnegative and Z, := J;'(0) = F-Y(B,) Forre X \ 2,
we have Jo(z) = [[F(z)ff - r = J(z) — r where J is the functional of the proof of Theorem
4.1. Thus, J, is of class C' in X\ Z, and Ji(r) = J'(z) for 2 € X\ Z,. As was seen in the
proof of Theorem 4.1, condition (4.2) implies that J' satisfies inequality (3.5) of Theorem
3.1 for ¢ F'(0). As a result, J! satisfies the same inequality for z ¢ Z, = F~1(B;),
and contractibility of F~'(B;) thus follows from Theorem 3.1.

Next, let U C Y be a connected open subset, and let z,.z; € F~!({’). We shall prove
that there is a continuous path in F~'(U) joining z; to ry, which suffices to establish its
connectedness. Set y, = F(z,) € Ui = 1,2, and let 5 : [0,1] — U’ be a continuous path
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joining z; to zz. Since U is open and o([0, 1]) is compact, the distance from ¢([0,1]) to
Y \ U is positive, and hence there is r > 0 such that the closed ball with center o(t) and
radius r is entirely contained in U irrespective of t € {0,1]. Consider a minimal (finite)
covering of 0({0,1]) by the interiors B,,1 < i < k, of such balls. Using finiteness and
minimality of the covering along with connectedness of o([0, 1)), it is easily seen that we
may manage so that y, € By and for 1 < i < k — 1,()9‘3,-)n3.~+, #0. Set C; =

,_;LJIB,» C U, so that Ciyy = Ci U By, and C;n Biyy # 0. From the first part of the
proof, F~1(B,) is contractible, hence pathwise connected. Since F~'(C;) = F~(B,) and
FYCy1) = FYCH U F~Y(Bigy), F-HC)NF Y (Biy1) # 0, it follows by induction
that F~(C,) is pathwise connected for 1 € ¢ < k. In particular, F~'(C}) is pathwise
connected, and 1,,z; € F~'(0([0.1])) C F~Y(Cy) C F~Y(U). Thus, z, and z; can be
joined by a continuous path in F~!(Cy). and therefore in F~}(U). O

Remark 4.4: Naturally, more is true when F: X — Y is a locally trivial C° fiber bundle
(e.g. when Theorem 4.2 (v) applies), namely F~'(U) and U have the same homotopy
type for every open subset U/ of ¥'. This follows from contractibility of F~!(y),y € U, and
arguments from the proof of Theorem 1.1. 0O

From the remarks at the end of Section 3, it follows that the results of this section have
counterparts when X is a complete C?~ Banach manifold with a Finsler structure (and Y
remains a Banach space with a C' norm away from the origin). Condition (4.2) must be
modified into
(4.10) F(za) bounded = lim, .oo(1 + é(7n.70)) ol fdF(za) y*|l > 0,
where § is the Finsler metric of X,zy € X is fixed and dF(z) : T, X — Y is the dif-
ferential of F at z. Condition (4.10) is independent of the choice of 7o (see Section 3).
Contractibility of F~(y) in part (ii) of Theorem 4.1 must be changed into “F~!(y) has
the same homotopy type as X" (and in particular is pathwise connected when X is con-
nected). For this reason, Corollary 4.3 is no longer valid as stated: if X is the cylinder
S x R, the projection X = §' x R — R = Y is obviously a proper C' submersion but
not a diffeomorphism. Similarly, in part (iii) of Theorem 4.1, it can be ascertained that
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F~(y) is not compact only if X does not have the homotopy type of any compact manifold
(without boundary). Theorem 4.2 (v) is unchanged, but in (vi) it is only true that F~'(y)
and F l(z) are C diffeomorphic, unless X is contractible (but then X =~ £ from the
arguments of the proof of Theorem 4.2 (vi), and hence that theorem applies). Theorem
4.3 remains valid if X is connected (thus pathwise connected).
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